HaSAPPy: A tool for candidate identification in pooled forward genetic screens of haploid mammalian cells
نویسندگان
چکیده
Haploid cells are increasingly used for screening of complex pathways in animal genomes. Hemizygous mutations introduced through viral insertional mutagenesis can be directly selected for phenotypic changes. Here we present HaSAPPy a tool for analysing sequencing datasets of screens using insertional mutations in large pools of haploid cells. Candidate gene prediction is implemented through identification of enrichment of insertional mutations after selection by simultaneously evaluating several parameters. We have developed HaSAPPy for analysis of genetic screens for silencing factors of X chromosome inactivation in haploid mouse embryonic stem cells. To benchmark the performance, we further analyse several datasets of genetic screens in human haploid cells for which candidates have been validated. Our results support the effective candidate prediction strategy of HaSAPPy. HaSAPPy is implemented in Python, licensed under the MIT license, and is available from https://github.com/gdiminin/HaSAPPy.
منابع مشابه
Fluorescence-Based Phenotypic Selection Allows Forward Genetic Screens in Haploid Human Cells
The isolation of haploid cell lines has recently allowed the power of forward genetic screens to be applied to mammalian cells. The interest in applying this powerful genetic approach to a mammalian system is only tempered by the limited utility of these screens, if confined to lethal phenotypes. Here we expand the scope of these approaches beyond live/dead screens and show that selection for a...
متن کاملVector Integration Sites Identification for Gene-Trap Screening in Mammalian Haploid Cells
Forward genetic screens using retroviral (or transposon) gene-trap vectors in a haploid genome revolutionized the investigation of molecular networks in mammals. However, the sequencing data generated by Phenotypic interrogation followed by Tag sequencing (PhiT-seq) were not well characterized. The analysis of human and mouse haploid screens allowed us to describe PhiT-seq data and to define qu...
متن کاملGenetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens
The application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here, we compare the efficacy of genome-wide CRISPR/Cas9-mediated forward genetic screens versus gene-trap...
متن کاملArrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens
Forward genetic screens using mammalian embryonic stem (ES) cells have identified genes required for numerous cellular processes. However, loss-of-function screens are more difficult to conduct in diploid cells because, in most cases, both alleles of a gene must be mutated to exhibit a phenotype. Recently, mammalian haploid ES cell lines were successfully established and applied to several rece...
متن کاملIdentification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells
In mammals, the noncoding Xist RNA triggers transcriptional silencing of one of the two X chromosomes in female cells. Here, we report a genetic screen for silencing factors in X chromosome inactivation using haploid mouse embryonic stem cells (ESCs) that carry an engineered selectable reporter system. This system was able to identify several candidate factors that are genetically required for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2018